Prediction of Enzyme Class by Using Reactive Motifs Generated from Binding and Catalytic Sites

نویسندگان

  • Peera Liewlom
  • Thanawin Rakthanmanon
  • Kitsana Waiyamai
چکیده

The purpose of this research is to search for motifs directly at binding and catalytic sites called reactive motifs, and then to predict enzyme functions from the discovered reactive motifs. The main challenge is that the data of binding, or catalytic sites is only available in the range 3.34% of all enzymes, and many of each data provides only one sequence record. The other challenge is the complexity of motif combinations to predict enzyme functions. In this paper, we introduce a unique process which combines statistics with bio-chemistry background to determine reactive motifs. It is consisting of block scan filter, mutation control, and reactive site-group define procedures. The purpose of block scan filter is to alter each 1-sequence record of binding or catalytic site, using similarity score, to produce quality blocks. These blocks are input to mutation control, where in each position of the sequences, amino acids are analyzed an extended to determine complete substitution group. Output of the mutation control step is a set of motifs for each 1-sequence record input. These motifs are then grouped using the reactive site-group define procedure to produce reactive motifs. Those reactive motifs together with known enzyme sequence dataset are used as the input to C4.5 learning algorithm, to obtain an enzyme prediction model. The accuracy of this model is checked against testing dataset. At 235 enzyme function class, the reactive motifs yield the best prediction result with C4.5 at 72.58%, better than PROSITE motifs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concept Lattice-Based Mutation Control for Reactive Motifs Discovery

We propose a method for automatically discovering reactive motifs, which are motifs discovered from binding and catalytic sites, which incorporate information at binding and catalytic sites with bio-chemical knowledge. We introduce the concept of mutation control that uses amino acid substitution groups and conserved regions to generate complete amino acid substitution groups. Mutation control ...

متن کامل

In silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties

Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

An Alkaline Phosphatase Lacking Wheat Germ Agglutinin Binding Sites Useful Enzyme for Lectin Assays with Comparable Activity to the Calf Enzyme

Despite the availability of various alkaline phosphatase (ALP) isoenzymes, the calf enzyme is being used in current enzyme assays as the detector enzyme. The glycosylation pattern of this enzyme makes it a suitable ligand for binding to wheat germ agglutinin lectin (WGA). As a result of this property, the enzyme can not be used as a conjugate with this lectin, and the calf enzyme conjugates can...

متن کامل

Cloning and Characterization of cbhII Gene fromTrichoderma parceramosum and Its Expressionin Pichia pastoris

The genomic and cDNA clones encoding cellobiohydrolase II (CBHII) have been isolated and sequenced from a native Iranian isolate of Trichoderma parceramosum, a high cellulolytic enzymes producer isolate. This represents the first report of cbhII gene from this organism. Comparison of genomic and cDNA sequences indicates this gene contains three short introns and also an open reading frame codin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007